3.870 \(\int \frac {\sqrt {-1+\frac {1}{x}} \sqrt {\frac {1}{x}} \sqrt {x}}{\sqrt {1+x}} \, dx\)

Optimal. Leaf size=24 \[ -\frac {2 \sqrt {-x} E\left (\left .\sin ^{-1}\left (\sqrt {-x}\right )\right |-1\right )}{\sqrt {x}} \]

[Out]

-2*EllipticE((-x)^(1/2),I)*(-x)^(1/2)/x^(1/2)

________________________________________________________________________________________

Rubi [B]  time = 0.02, antiderivative size = 49, normalized size of antiderivative = 2.04, number of steps used = 4, number of rules used = 4, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.138, Rules used = {15, 435, 111, 110} \[ -\frac {2 \sqrt {\frac {1}{x}-1} \sqrt {\frac {1}{x}} \sqrt {-x} \sqrt {x} E\left (\left .\sin ^{-1}\left (\sqrt {-x}\right )\right |-1\right )}{\sqrt {1-x}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[-1 + x^(-1)]*Sqrt[x^(-1)]*Sqrt[x])/Sqrt[1 + x],x]

[Out]

(-2*Sqrt[-1 + x^(-1)]*Sqrt[x^(-1)]*Sqrt[-x]*Sqrt[x]*EllipticE[ArcSin[Sqrt[-x]], -1])/Sqrt[1 - x]

Rule 15

Int[(u_.)*((a_.)*(x_)^(n_))^(m_), x_Symbol] :> Dist[(a^IntPart[m]*(a*x^n)^FracPart[m])/x^(n*FracPart[m]), Int[
u*x^(m*n), x], x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[m]

Rule 110

Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2*Sqrt[e]*Rt[-(b/d)
, 2]*EllipticE[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-(b/d), 2])], (c*f)/(d*e)])/b, x] /; FreeQ[{b, c, d, e, f}, x] &&
NeQ[d*e - c*f, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !LtQ[-(b/d), 0]

Rule 111

Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Dist[Sqrt[-(b*x)]/Sqrt[b*
x], Int[Sqrt[e + f*x]/(Sqrt[-(b*x)]*Sqrt[c + d*x]), x], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] &
& GtQ[c, 0] && GtQ[e, 0] && LtQ[-(b/d), 0]

Rule 435

Int[((c_) + (d_.)*(x_)^(mn_.))^(q_)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(x^(n*FracPart[q])*(c +
d/x^n)^FracPart[q])/(d + c*x^n)^FracPart[q], Int[((a + b*x^n)^p*(d + c*x^n)^q)/x^(n*q), x], x] /; FreeQ[{a, b,
 c, d, n, p, q}, x] && EqQ[mn, -n] &&  !IntegerQ[q] &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {\sqrt {-1+\frac {1}{x}} \sqrt {\frac {1}{x}} \sqrt {x}}{\sqrt {1+x}} \, dx &=\left (\sqrt {\frac {1}{x}} \sqrt {x}\right ) \int \frac {\sqrt {-1+\frac {1}{x}}}{\sqrt {1+x}} \, dx\\ &=\frac {\sqrt {-1+\frac {1}{x}} \int \frac {\sqrt {1-x}}{\sqrt {x} \sqrt {1+x}} \, dx}{\sqrt {1-x} \sqrt {\frac {1}{x}}}\\ &=\frac {\left (\sqrt {-1+\frac {1}{x}} \sqrt {-x}\right ) \int \frac {\sqrt {1-x}}{\sqrt {-x} \sqrt {1+x}} \, dx}{\sqrt {1-x} \sqrt {\frac {1}{x}} \sqrt {x}}\\ &=-\frac {2 \sqrt {-1+\frac {1}{x}} \sqrt {-x} E\left (\left .\sin ^{-1}\left (\sqrt {-x}\right )\right |-1\right )}{\sqrt {1-x} \sqrt {\frac {1}{x}} \sqrt {x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.05, size = 66, normalized size = 2.75 \[ -\frac {2 \sqrt {\frac {x}{x+1}} \sqrt {1-x^2} \left (x \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};x^2\right )-3 \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};x^2\right )\right )}{3 \sqrt {1-x}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(Sqrt[-1 + x^(-1)]*Sqrt[x^(-1)]*Sqrt[x])/Sqrt[1 + x],x]

[Out]

(-2*Sqrt[x/(1 + x)]*Sqrt[1 - x^2]*(-3*Hypergeometric2F1[1/4, 1/2, 5/4, x^2] + x*Hypergeometric2F1[1/2, 3/4, 7/
4, x^2]))/(3*Sqrt[1 - x])

________________________________________________________________________________________

fricas [F]  time = 0.87, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {-\frac {x - 1}{x}}}{\sqrt {x + 1}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+1/x)^(1/2)*(1/x)^(1/2)*x^(1/2)/(1+x)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(-(x - 1)/x)/sqrt(x + 1), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\frac {1}{x} - 1}}{\sqrt {x + 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+1/x)^(1/2)*(1/x)^(1/2)*x^(1/2)/(1+x)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(1/x - 1)/sqrt(x + 1), x)

________________________________________________________________________________________

maple [B]  time = 0.01, size = 49, normalized size = 2.04 \[ -\frac {2 \sqrt {\frac {1}{x}}\, \sqrt {-\frac {x -1}{x}}\, \sqrt {-x}\, \sqrt {-2 x +2}\, \sqrt {x}\, \EllipticE \left (\sqrt {x +1}, \frac {\sqrt {2}}{2}\right )}{x -1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/x-1)^(1/2)*(1/x)^(1/2)*x^(1/2)/(x+1)^(1/2),x)

[Out]

-2*(1/x)^(1/2)*x^(1/2)*(-(x-1)/x)^(1/2)*EllipticE((x+1)^(1/2),1/2*2^(1/2))*(-x)^(1/2)*(-2*x+2)^(1/2)/(x-1)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\frac {1}{x} - 1}}{\sqrt {x + 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+1/x)^(1/2)*(1/x)^(1/2)*x^(1/2)/(1+x)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(1/x - 1)/sqrt(x + 1), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.04 \[ \int \frac {\sqrt {x}\,\sqrt {\frac {1}{x}-1}\,\sqrt {\frac {1}{x}}}{\sqrt {x+1}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^(1/2)*(1/x - 1)^(1/2)*(1/x)^(1/2))/(x + 1)^(1/2),x)

[Out]

int((x^(1/2)*(1/x - 1)^(1/2)*(1/x)^(1/2))/(x + 1)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {x} \sqrt {-1 + \frac {1}{x}} \sqrt {\frac {1}{x}}}{\sqrt {x + 1}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+1/x)**(1/2)*(1/x)**(1/2)*x**(1/2)/(1+x)**(1/2),x)

[Out]

Integral(sqrt(x)*sqrt(-1 + 1/x)*sqrt(1/x)/sqrt(x + 1), x)

________________________________________________________________________________________